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Complete convergence theorems for weighted row sums
from arrays of random elements in Rademacher type
p and martingale type p Banach spaces

Tien-Chung Hua, Andrew Rosalskyb, and Andrei Volodinc

aDepartment of Mathematics, National Tsing Hua University, Hsingchu, Taiwan, Republic of China;
bDepartment of Statistics, University of Florida, Gainesville, Florida, USA; cDepartment of Mathematics
and Statistics, University of Regina, Regina, Saskatchewan, Canada

ABSTRACT
In this correspondence, complete convergence theorems are estab-
lished for weighted row sums fPj

i¼1 an;iVn;i; 1 � j � kn; n � 1g from
arrays fVn;i; 1 � i � kn; n � 1; kn ! 1g of random elements taking
values in real separable Rademacher type p ð1 � p � 2Þ Banach
spaces as well as real separable martingale type p ð1 � p � 2Þ
Banach spaces. It is assumed that supfEkVn;ikp : 1 � i � kn; n �
1g<1: A version of the Rademacher type p complete convergence
theorem is also established with random variable weights. Illustrative
examples are included.
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1. Introduction

The concept of complete convergence for a sequence of (real-valued) random variables
was introduced by Hsu and Robbins [1] as follows. A sequence of random variables
fUn; n � 1g is said to converge completely to 0 if

X1
n¼1

P jUnj> eð Þ<1 for all e> 0:

This implies by the Borel–Cantelli lemma that Un ! 0 almost surely (a.s.). The con-
verse is true if fUn; n � 1g is a sequence of independent random variables. A sequence
of Banach space valued random elements is said to converge completely to the 0 element
of the Banach space if the corresponding sequence of norms converges completely to 0.
Hsu and Robbins [1] and Erd€os [2] investigated complete convergence for the

sequence of arithmetic means of independent and identically distributed (i.i.d.) random
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variables. The Hsu–Robbins–Erd€os result is formulated as follows where the sufficiency
half is due to Hsu and Robbins [1] and the necessity half is due to Erd€os [2].

Theorem 1.1. Let fXn; n � 1g be a sequence of i.i.d. random variables. Then
Pn

i¼1
Xi

n con-
verges completely to 0 if and only if EX1 ¼ 0 and EX2

1 <1:

There has been a vast literature of investigation generalizing and extending this result in
many directions. These generalizations and extensions pertain to the partial sums from a
sequence (or to the row sums from an array) of either random variables or Banach space
valued random elements and are obtained under a variety of different dependence struc-
tures. Some of these results indicate the rate of complete convergence in the sense that

X1
n¼1

cnP jUnj> eð Þ<1 for all e> 0

is proven where fcn; n � 1g is a sequence in ð0;1Þ: Of course, these results only have
content when

P1
n¼1 cn ¼ 1:

We refer the reader to Hu, Rosalsky, and Volodin [3] and Shen, Wang, and Zhu [4]
(and references in these articles) for comprehensive reviews of the literature on com-
plete convergence.
In the current work, the main results, Theorems 3.1, 3.2, and 3.4, are complete con-

vergence theorems for weighted row sums from arrays of Banach space valued random
elements. In Theorems 3.1 and 3.4, the random elements take values in real separable
Rademacher type pð1 � p � 2Þ Banach spaces whereas in Theorem 3.2, the random ele-
ments take values in real separable martingale type pð1 � p � 2Þ Banach spaces.
(Technical definitions such as these will be reviewed in Section 2.) Throughout,
fkn; n � 1g is a sequence of positive integers with kn ! 1 as n ! 1: In Theorems 3.1
and 3.4, the array is assumed to be comprised of rowwise independent random ele-
ments; that is, the random elements from the same row are independent but no inde-
pendence conditions are imposed between the random elements from different rows. In
Theorem 3.2, the array after being suitably centered, is comprised of martingale differ-
ences. Theorem 3.4 is a version of Theorem 3.1 with random variable weights.
As will be apparent, the current work owes much to the work of Shen, Wang, and

Zhu [4] (especially to their Theorem 7). Shen, Wang, and Zhu [4] corrected, simplified,
and extended a previous result of Cai [5]. Despite the brilliance and originality of the
Shen, Wang, and Zhu [4] article, we point out that its Theorem 10 is not valid as for-
mulated. One of its hypotheses is

Xn
i¼1

a2i ¼ O
1

log nð Þ1þa

� �
(1.1)

for some a> 0 where fan; n � 1g is a sequence of constants and its conclusion is of the
form

X1
n¼1

pn
n

<1 (1.2)

where fpn; n � 1g is a nondecreasing sequence of probabilities. The assertions (1.1) and
(1.2) cannot hold if ai 6¼ 0 for some i � 1 and pn > 0 for some n � 1:
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2. Preliminaries

Throughout this article, all random elements under consideration are defined on a fixed
but otherwise arbitrary probability space ðX;F ; PÞ and take values in a real separable
Banach space X with norm k � k: It is supposed that X is equipped with its Borel
r-algebra B; that is, B is the r-algebra generated by the class of open subsets of X
determined by k � k: A random element V in X is an F -measurable transformation
from X to the measurable space ðX ;BÞ: We use the symbol C to denote a generic con-
stant (0<C<1) which is not necessary the same one in each appearance. For x > 0,
we define log x by log x ¼ log ex�e where log e is the logarithm to the base e. Technical
definitions relevant to the current work will be discussed in this section and the key
lemmas which are used to prove the main results will be presented.
The expected value or mean of a random element V, denoted by EV or by E(V), is

defined to be the Pettis integral provided it exists; that is, V has expected value EV 2 X
if f ðEVÞ ¼ Eðf ðVÞÞ for every f 2 X�; where X� is the (dual) space of all continuous lin-
ear functionals on X : If EkVk<1; then (see, e.g., Taylor [6]) V has an expected value.
Let fYn; n � 1g be a symmetric Bernoulli sequence; that is, fYn; n � 1g is a sequence

of i.i.d. random variables with PðY1 ¼ 1Þ ¼ PðY1 ¼ �1Þ ¼ 1=2: Let X1 ¼ X � X �
X � � � � and define

C Xð Þ ¼ v1; v2; :::ð Þ 2 X1 :
X1
n¼1

Ynvn converges in probability

( )
:

Let 1 � p � 2: Then X is said to be of Rademacher type p if there exists a constant
0<C<1 such that

E

����X1
n¼1

Ynvn

����
p

� C
X1
n¼1

kvnkp for all v1; v2; :::ð Þ 2 C Xð Þ:

Rosalsky and Volodin [7] pointed out that the condition that X is of Rademacher
type p is indeed equivalent to the structurally simpler condition that there exists a con-
stant 0<C<1 such that

E

����XN
n¼1

Ynvn

����
p

� C
XN
n¼1

kvnkp for all N � 1 and vn 2 X ; 1 � n � N:

Moreover, Hoffmann-Jørgensen and Pisier [8] proved for 1 � p � 2 that a real separ-
able Banach space is of Rademacher type p if and only if there exists a constant
0<C<1 such that

E

����Xn
i¼1

Vi

����
p

� C
Xn
i¼1

EkVikp

for every finite collection fV1; :::;Vng of independent mean 0 random elements.
If a real separable Banach space is of Rademacher type p for some p 2 ð1; 2�; then it

is of Rademacher type q for all q 2 ½1; p�:
For a random element V and a sub-r-algebra G of F ; the conditional expectation

EðVjGÞ was introduced by Scalora [9] and is defined analogously to that in the random
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variable case and enjoys similar properties. See Scalora [9] for a complete development
including Banach space valued martingales and martingale convergence theorems.
A real separable Banach space X is said to be of martingale type pð1 � p � 2Þ if there

exists a constant 0<C<1 such that for all martingales fSn;F n; n � 1g with values in X ;

sup
n�1

EkSnkp � C
X1
n¼1

EkSn�Sn�1kp

where S0 	 0: It can be shown (see Pisier [10] and [11]) that X being of martingale
type p is indeed equivalent to apparently stronger condition that for all 1 � q<1;

there exists a constant Cp;q <1 such that for all martingales fSn;F n; n � 1g with values
in X ;

E sup
n�1

kSnk
� �q
 !

� Cp;qE
X1
n¼1

kSn � Sn�1kp
 !q=p

: (2.1)

It readily follows from (2.1) that if X is of martingale type p for some p 2 ð1; 2�; then
it is of martingale type q for all q 2 ½1; p�:
Every real separable Banach space is of martingale type (at least) 1. For 1 � p<1;

the Lp-spaces and ‘p-spaces are of martingale type p�2: Detailed discussion concerning
martingale type p Banach spaces can be found in Pisier [10] and [11], Woyczy�nski [12]
and [13], and Schwartz [14].
It follows from the Hoffmann-Jørgensen and Pisier [8] characterization of

Rademacher type p Banach spaces discussed above that if a Banach space is of martin-
gale type p, then it is of Rademacher type p. But a Banach space can be of Rademacher
type 2 (hence be of Rademacher type p for all p 2 ½1; 2�) yet be of martingale type p
only for p¼ 1; for details see Pisier [11] and James [15].
The key lemma in the proofs of Theorems 3.1 and 3.4 follows.

Lemma 2.1. (Rosalsky and Van Thanh [16], Lemma 2.1)) Suppose that the real separ-
able Banach space X is of Rademacher type pð1 � p � 2Þ. Then there exists a constant
Cp 2 ð0;1Þ depending only on p such that for every sequence fVn; n � 1g of independent
mean 0 random elements,

E max
1�j�n

����X
j

i¼1

Vi

����
 !p

0
@

1
A � Cp

Xn
i¼1

EkVikp; n � 1:

The key lemma in the proof of Theorem 3.2 follows. The lemma is an immediate
consequence of (2.1) taking q¼ p. Alternatively, the lemma follows by the argument
used in the proof of Lemma 2.1 of Rosalsky and Van Thanh [16], mutatis mutandis.

Lemma 2.2. Suppose that the real separable Banach space X is of martingale type pð1 �
p � 2Þ: Then there exists a constant Cp 2 ð0;1Þ depending only on p such that for all
martingales fSn;F n; n � 1g with values in X ;

E max
1�j�n

kSjk
� �p� �

� Cp

Xn
i¼1

EkSi�Si�1kp; n � 1

where S0 	 0:
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3. Mainstream

With the preliminaries accounted for, the main results may be stated and proved. In
Theorems 3.1 and 3.2, the an;i; 1 � i � kn; n � 1 are weights and the Sn;j; 1 � j � kn; n � 1
are thus weighted row sums. Theorems 3.1, 3.2, and 3.4 are apparently new results
when X ¼ R:

Theorem 3.1. Let fVn;i; 1 � i � kn; n � 1g be an array of rowwise independent mean 0
random elements in a real separable Rademacher type pð1 � p � 2Þ Banach space and
suppose that

sup EkVn;ikp : 1 � i � kn; n � 1
� �

<1: (3.1)

Let fcn; n � 1g be a sequence in ð0;1Þ and let fan;i; 1 � i � kn; n � 1g be an array of
constants such that X1

n¼1

cn
n
bn;p<1; (3.2)

where bn;p ¼
Pkn

i¼1 jan;ijp; n � 1. Let

Sn;j ¼
Xj
i¼1

an;iVn;i; 1 � j � kn; n � 1:

Then X1
n¼1

cn
n
P max

1�j�kn
kSn;jk > e

� �
<1 for all e> 0: (3.3)

Proof. For arbitrary e> 0X1
n¼1

cn
n
P max

1�j�kn
kSn;jk > e

� �

� C
X1
n¼1

cn
n
E max

1�j�kn
kSn;jk

� �p� �
ðby the Markov inequalityÞ

� C
X1
n¼1

cn
n

Xkn
i¼1

Ekan;iVn;ikp ðby Lemma 2:1Þ

¼ C
X1
n¼1

cn
n

Xkn
i¼1

jan;ijpEkVn;ikp

� C
X1
n¼1

cn
n

Xkn
i¼1

jan;ijp by 3:1ð Þ	 


¼ C
X1
n¼1

cn
n
bn;p <1 by 3:2ð Þ	 


thereby proving (3.3). w

STOCHASTIC ANALYSIS AND APPLICATIONS 5



Remark 3.1. The larger are the cn; n � 1; the stronger is the assumption (3.2) as well as
the conclusion (3.3).

Corollary 3.1. If the hypothesis of Theorem 3.1 are satisfied with n ¼ OðcnÞ, then

lim
n!1 max

1�j�kn
kSn;jk ¼ 0 a:s: (3.4)

Proof. It follows from n ¼ OðcnÞ and (3.3) thatX1
n¼1

P max
1�j�kn

kSn;jk > e
� �

<1 for all e> 0:

Then by the Borel–Cantelli lemma,

P max
1�j�kn

kSn;jk > e i:o: nð Þ� � ¼ 0 for all e> 0

thereby proving (3.4). w

Corollary 3.2. Let fVn;i; 1 � i � kn; n � 1g be an array of rowwise independent mean 0
random elements in a real separable Rademacher type pð1 � p � 2Þ Banach space and
suppose that (3.1) holds. Let fcn; n � 1g be a sequence in ð0;1Þ and let fan;i; 1 � i �
kn; n � 1g be an array of constants such that

bn;p 	
Xkn
i¼1

jan;ijp ¼ O
1

cn log nð Þ log log nð Þ1þd

 !
for some d> 0: (3.5)

Then (3.3) holds.

Proof. Note that (3.2) holds since by (3.5) we haveX1
n¼1

cn
n
bn;p � C

X1
n¼1

1

n log nð Þ log log nð Þ1þd
<1:

The conclusion (3.3) follows immediately from Theorem 3.1. w

The following example, which was inspired by an example presented in
Kuczmaszewska and Szynal [17], shows that Corollary 3.2 and Theorem 3.1 can fail if
the Banach space is not of Rademacher type p where p 2 ð1; 2�:
Example 3.1. Consider the real separable Banach space ‘1 of absolutely summable real
sequences v ¼ fvk; k � 1g with norm kvk ¼P1

k¼1 jvkj: It is well known that ‘1 is not of
Rademacher type p for every p 2 ð1; 2�: Let vðiÞ denote the i-th element of the standard
basis in ‘1; i � 1; that is, vðiÞ is the element in ‘1 having 1 for its i-th coordinate and 0

for the other coordinates, i � 1: Let p 2 ð1; 2� and a 2
�

1
p ; 1
�
: Define an array

fVn;i; 1 � i � n; n � 1g of random elements in ‘1 by requiring fVn;i; 1 � i � n; n � 1g
to be a rowwise independent array with

6 T.-C. HU ET AL.



P Vn;i ¼ v ið Þ
� �

¼ P Vn;i ¼ �v ið Þ
� �

¼ 1
2
; 1 � i � n; n � 1:

Let

cn ¼ 1; n � 1 and an;i ¼ 1
na

; 1 � i � n; n � 1:

Then EkVn;ikp ¼ 1; 1 � i � n; n � 1; and (3.5) and (3.2) hold with kn ¼ n; n � 1:
Note that for n � 1;

kSn;nk ¼
����Xn

i¼1

1
na

Vn;i

���� ¼
Pn

i¼1 1
na

¼ n1�a a:s: (3.6)

Then X1
n¼1

1
n
P max

1�j�kn
kSn;jk >

1
2

� �

�
X1
n¼1

1
n
P kSn;nk >

1
2

� �

¼
X1
n¼1

1
n

by 3:6ð Þ and 1�a> 0
	 


¼ 1
and so the conclusion (3.3) of Corollary 3.2 and Theorem 3.1 fails.

Theorem 3.2. Let fVn;i; 1 � i � kn; n � 1g be an array of random elements in a real sep-
arable martingale type pð1 � p � 2Þ Banach space X and suppose that (3.1) holds. Let
fcn; n � 1g be a sequence in ð0;1Þ and let fan;i; 1 � i � kn; n � 1g be an array of con-
stants satisfying (3.2). Let

Sn;j ¼
Xj
i¼1

an;i Vn;i�ln;i
	 


; 1 � j � kn; n � 1

where

ln;1 ¼ EVn;1; ln;i ¼ E Vn;ijVn;1; :::;Vn;i�1
	 


; 2 � i � kn; n � 1:

Then X1
n¼1

cn
n
P max

1�j�kn
kSn;jk > e

� �
<1 for all e> 0:

Proof. Let

Vn;0 ¼ 0 and F n;i ¼ r Vn;0; :::;Vn;ið Þ; 0 � i � kn; n � 1:

For all n � 1 and 1 � i � kn;

ln;i is F n;i�1�measurable

and hence

STOCHASTIC ANALYSIS AND APPLICATIONS 7



E an;i Vn;i�ln;i
	 
jF n;i�1

� �
¼ an;i ln;i�ln;ið Þ ¼ 0 a:s:

Thus for all n � 1; the an;iðVn;i�ln;iÞ; 1 � i � kn are martingale differences; that is,
fSn;j;F n;j; 1 � j � kng is a martingale in X :

Next, for all n � 1 and 1 � i � kn;

EkVn;i�ln;ikp
¼ EkVn;i�E Vn;ijF n;i�1

	 
kp
� E kVn;ik þ kE Vn;ijF n;i�1

	 
k	 
p
� E kVn;ik þ E kVn;ikjF n;i�1

	 
	 
p
by Theorem 2:2 of Scalara 9½ �	 


� CE kVn;ikp þ E kVn;ikjF n;i�1
	 
	 
p� �

� CE kVn;ikp þ E kVn;ikpjF n;i�1

	 
	 

by Jensen0s inequality for conditional expectations
	 


¼ CEkVn:ikp:
(3.7)

Then for arbitrary e> 0;X1
n¼1

cn
n
P max

1�j�kn
kSn;jk > e

� �

� C
X1
n¼1

cn
n
E max

1�j�kn
kSn;jk

� �p� �
ðby the Markov inequalityÞ

� C
X1
n¼1

cn
n

Xkn
i¼1

Ekan;i Vn;i�ln;i
	 
kp by Lemma 2:2ð Þ

� C
X1
n¼1

cn
n

Xkn
i¼1

jan;ijpEkVn;ikp by 3:7ð Þ	 

and the rest of the argument proceeds exactly as in the proof of Theorem 3.1. w

Corollary 3.3. If the hypothesis of Theorem 3.2 are satisfied with n ¼ OðcnÞ, then

lim
n!1 max

1�j�kn
kSn;jk ¼ 0 a:s:

Proof. The argument is identical to that for proving Corollary 3.1. w

Corollary 3.4. Let fVn;i; 1 � i � kn; n � 1g be an array of random elements in a real
separable martingale type pð1 � p � 2Þ Banach space X and suppose that (3.1) holds. Let
fcn; n � 1g be a sequence in ð0;1Þ and let fan;i; 1 � i � kn; n � 1g be an array of con-
stants satisfying (3.5). Let

Sn;j ¼
Xj
i¼1

an;i Vn;i�ln;i
	 


; 1 � j � kn; n � 1

where

8 T.-C. HU ET AL.



ln;1 ¼ EVn;1; ln;i ¼ E Vn;ijVn;1; :::;Vn;i�1
	 


; 2 � i � kn; n � 1:

Then X1
n¼1

cn
n
P max

1�j�kn
kSn;jk > e

� �
<1 for all e> 0:

Proof. The argument is identical to that for proving Corollary 3.2 except that Theorem
3.2 is employed instead of Theorem 3.1. w

The following complete convergence theorem is the main result in the article by Hu,
Rosalsky, and Volodin [3]. In Example 3.2 below, the hypotheses of Corollary 3.2 are
satisfied but those of Theorem 3.3 are not whereas in Example 3.3 below, the hypothe-
ses of Theorem 3.3 are satisfied but those of Theorem 3.1 are not.

Theorem 3.3. (Hu, Rosalsky, and Volodin [3], Theorem 3.1). Let fWn;i; 1 � i � kn; n � 1g
be an array of rowwise independent random elements taking values in a real separable
Rademacher type pð1 � p � 2Þ Banach space and let fcn; n � 1g be a sequence of positive
constants. Suppose for some J > 0 and some d1; d2 > 0 that

X1
n¼1

cn
n

Xkn
i¼1

P kWn;ik> e
	 


<1 for all e> 0; (3.8)

X1
n¼1

cn
n

Xkn
i¼1

E kWn;ikpI kWn;ik � d1
	 
� � !J

<1; (3.9)

and

Xkn
i¼1

E Wn;iI kWn;ik � d2
	 
	 
! 0: (3.10)

Then

X1
n¼1

cn
n
P

����Xkn
i¼1

Wn;i

���� > e

 !
<1 for all e> 0:

Example 3.2. Let X be a real separable Rademacher type p¼ 2 Banach space, let

kn ¼ n; cn ¼ 1; an ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
n log n

p
log log n

; n � 1;

and let

an;i ¼ an; 1 � i � n; n � 1:

Let fVn;i; 1 � i � n; n � 1g be an array of identically distributed and rowwise inde-
pendent random elements with EkV1;1k2 <1 and EV1;1 6¼ 0: Then EkVn;ik2 ¼
EkV1;1k2; 1 � i � n; n � 1: Moreover,

STOCHASTIC ANALYSIS AND APPLICATIONS 9



Xn
i¼1

jan;ij2 ¼ n

n log nð Þ log log nð Þ2 ¼ O
1

cn log nð Þ log log nð Þ2
� �

:

The hypotheses of Corollary 3.2 are satisfied with d¼ 1 and so by Corollary 3.2,

X1
n¼1

1
n
P

max1�j�nk
Pj

i¼1 Vn;ikffiffiffiffiffiffiffiffiffiffiffiffiffi
n log n

p
log log n

> e

 !

¼
X1
n¼1

1
n
P max

1�j�n

����X
j

i¼1

an;iVn;i

���� > e

 !
<1 for all e> 0:

Next, let Wn;i ¼ an;iVn;i; 1 � i � n; n � 1: We will verify that condition (3.10) of
Theorem 3.3 fails for all d2 > 0: For d2 > 0; it follows from EkV1;1k<1; 0< an ! 0;
and the Lebesgue dominated convergence theorem that����E V1;1I kV1;1k <

d2
an

� �� �
� EV1;1

����
¼
����E V1;1I kV1;1k � d2

an

� �� �����
� E kV1;1kI kV1;1k � d2

an

� �� �
! 0:

Thus

E V1;1I kV1;1k <
d2
an

� �� �
! EV1;1 6¼ 0

and so ����E V1;1I kV1;1k <
d2
an

� �� �����! kEV1;1k> 0:

Then ����Xkn
i¼1

E Wn;iI kWn;ik � d2
	 
	 
����

¼
����Xkn

i¼1

anE Vn;iI kVn;ik <
d2
an

� �� �����
¼
����nanE V1;1I kV1;1k <

d2
an

� �� �����
¼

ffiffiffi
n

pffiffiffiffiffiffiffiffiffiffiffi
log n

p
log log n

����E V1;1I kV1;1k <
d2
an

� �� �����! 1:

Thus (3.10) fails for all d2 > 0:

Example 3.3. Let fVn;i; 1 � i � n; n � 1g be an array of identically distributed and rowwise
independent symmetric random variables with EjV1;1j<1: Let p ¼ 1; kn ¼ n; cn ¼ 1; an;i ¼
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1
n log n ;Wn;i ¼ an;iVn;i; 1 � i � n; n � 1; and let d1 ¼ d2 ¼ 1 and J > 1. We first verify that
conditions (3.8), (3.9), and (3.10) are satisfied.
For arbitrary e> 0;

X1
n¼1

cn
n

Xn
i¼1

P jWn;ij> e
	 
 ¼X1

n¼1

1
n
nP jV1;1j> n log nð Þe	 
 �X1

n¼1

P jV1;1j> ne
	 


<1

since EjV1;1j<1 thereby verifying (3.8).
Next,

X1
n¼1

cn
n

Xn
i¼1

E jWn;ijpI jWn;ij � d1
	 
� � !J

�
X1
n¼1

1
n

Xn
i¼1

EjV1;1j
n log n

 !J

¼
X1
n¼1

EjV1;1j
	 
J
n log nð ÞJ <1

since J > 1 thereby verifying (3.9).
Finally, the condition (3.10) holds by the symmetry hypothesis.
Thus by Theorem 3.3,

X1
n¼1

1
n
P

����Pn
i¼1 Vn;i

����
n log n

> e

0
B@

1
CA ¼

X1
n¼1

1
n
P

����Xn
i¼1

Wn;i

���� > e

 !
<1 for all e> 0:

But

Xn
i¼1

jan;ijp ¼ 1
log n

and so the condition (3.2) of Theorem 3.1 fails.

Remark 3.2. In Example 3.2, the hypotheses of Theorem 3.1 are also satisfied and in
Example 3.3, the hypotheses of Corollary 3.2 are not satisfied.

Remark 3.3. It is an open question as to whether or not (3.3) holds for the random
variables in Example 3.3. However, in the following example, the condition (3.2) of
Theorem 3.1 is also not satisfied yet its conclusion (3.3) does hold. The example is a
modification of Example 3.1.

Example 3.4. Let fVn;i; 1 � i � n; n � 1g be the array of random elements taking values
in the real separable Rademacher type p¼ 1 Banach space ‘1 considered in Example 3.1.
Let fcn; n � 1g be a sequence of constants such that infn�1 cn> 0 and let kn ¼ n; an;i ¼

1
n log n ; 1 � i � n; n � 1: As in Example 3.3, the condition (3.2) of Theorem 3.1 fails. Let
Sn;j; 1 � j � n; n � 1 be as in Theorem 3.1. Note that for all n � 1;

max
1�j�n

kSn;jk ¼ max1�j�nk
Pj

i¼1 Vn;ik
n log n

¼ max1�j�n
Pj

i¼1 1

n log n
¼ 1

log n
a:s:

and so for all e> 0 and all large n

P max
1�j�n

kSn;jk > e
� � ¼ 0:

Consequently, (3.3) holds.
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We close by presenting a version of Theorem 3.1 where the weights An;i; 1 � i �
kn; n � 1 are random variables. In view of the randomness often encountered in the
applied sciences, it has become increasingly important to establish limit theorems for
randomly weighted sums. For example, Rosalsky and Sreehari [18] provided an applica-
tion of randomly weighted sums to the field of queueing theory. Taylor and Padgett
[19], Wei and Taylor [20] and [21], Taylor and Calhoun [22]), Taylor, Raina, and
Daffer [23], Ord�o~nez Cabrera [24], Adler, Rosalsky, and Taylor [25], and Rosalsky,
Sreehari, and Volodin [26] studied the limiting behavior of randomly weighted sums in
real separable Banach spaces.
In Theorem 3.4, there are no independence or uncorrelation conditions between the

random weight An;i and the random element Vn;i; 1 � i � kn; n � 1: It is assumed that
fAn;iVn;i; 1 � i � kn; n � 1g is an array of rowwise independent mean 0 random ele-
ments. It should be noted that each An;iVn;i is automatically a random element (see,
e.g., Taylor [6], p. 24).

Theorem 3.4. Let fVn;i; 1 � i � kn; n � 1g be an array of rowwise independent random
elements taking values in a real separable Rademacher type pð1 � p � 2Þ Banach space.
Let fcn; n � 1g be a sequence of constants and let fAn;i; 1 � i � kn; n � 1g be an array
of random variables. Suppose that the array fAn;iVn;i; 1 � i � kn; n � 1g is comprised of
rowwise independent mean 0 random elements. Let

Sn;j ¼
Xj
i¼1

An;iVn;i; 1 � j � kn; n � 1:

Suppose for some q > 1 that
(i)

sup EkVn;ik
pq
q�1 : 1 � i � kn; n � 1

n o
<1 (3.11)

and X1
n¼1

cn
n

Xkn
i¼1

EjAn;ijpq
	 
1=q

<1 (3.12)

or
(ii)

sup EkVn;ikpq : 1 � i � kn; n � 1
� �

<1
and X1

n¼1

cn
n

Xkn
i¼1

EjAn;ij
pq
q�1

� �q�1
q

<1
or

(iii)

sup EkAn;ik
pq
q�1 : 1 � i � kn; n � 1

n o
<1

and

X1
n¼1

cn
n

Xkn
i¼1

EkVn;ikpq
	 
1=q

<1

or
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(iv)

sup EkAn;ikpq : 1 � i � kn; n � 1
� �

<1
and

X1
n¼1

cn
n

Xkn
i¼1

EkVn;ik
pq
q�1

� �q�1
q

<1

holds. Then

X1
n¼1

cn
n
P max

1�j�kn
kSn;jk > e

� �
<1 for all e> 0: (3.13)

Proof. The proof will only be given for (i) since the arguments for (ii), (iii), and (iv) are
similar. For arbitrary e> 0;

X1
n¼1

cn
n
P max

1�j�kn
kSn;jk > e

� �

� C
X1
n¼1

cn
n
E max

1�j�kn
kSn;jk

� �p� �
ðby the Markov inequalityÞ

� C
X1
n¼1

cn
n

Xkn
i¼1

EkAn;iVn;ikp ðby Lemma 2:1Þ

� C
X1
n¼1

cn
n

Xkn
i¼1

EjAn;ijpq
	 
1

q EkVn;ik
pq
q�1

� �q�1
q

by Ho
::
lder0s inequality

	 


� C
X1
n¼1

cn
n

Xkn
i¼1

EjAn;ijpq
	 
1=q

by 3:11ð Þ	 

<1 by 3:12ð Þ	 


thereby proving (3.13). w
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